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Abstract

This report describes the development of a microstructural model that can quantify the
uncertainty in the observed rupture life of Grade 91 steel. The model is microstructural,
meaning it relates microstructural characteristics of the material to the resulting material
response. As such, one of the uses of this model is to identify the key microstructural param-
eters controlling the development of damage in Grade 91 operating at elevated temperatures.
The report describes two veins of work: improvements to the crystal plasticity model required
to run the uncertainty quantification analysis and the results of that UQ analysis. For creep,
the model identifies the grain boundary diffusivity as the critical parameter controlling the
rupture life of the material. The report demonstrates that a reasonable microstructural dis-
tribution of grain boundary diffusivity can account for the observed macroscale variation in
rupture life at fixed temperature and load.
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1 Introduction

This report describes an effort at Argonne National Laboratory (ANL) to quantify the key
microstructural characteristics linked to creep deformation and damage in Grade 91 steel.
The work described here is part of a larger effort sponsored though the Nuclear Energy
Advanced Modeling and Simulation (NEAMS) program at ANL, Idaho National Laboratory
(INL), and Las Alamos National Laboratory (LANL) to address the critical need to better
quantify uncertainty in the design of nuclear reactor structural components. This work feeds
into the Grizzly simulation platform, developed at INL, which is a tool for structural analysis,
including uncertainty quantification, for reactor components.

The current work fits into this broader approach by quantifying uncertainty in long term
creep deformation and rupture in Grade 91. Grade 91 steel is a ferritic-martensitic alloy
slated for future use in advanced, high temperature reactors because of its low cost, good
thermal properties, and relatively good long-term creep strength [1, 2]. The current design
process for reactor structural components applies a factored, deterministic analysis to bound
the expected distribution of component loading, geometric imperfections, and, crucially, ma-
terial properties. However, our understanding of the variability in key material properties
for Grade 91 and other structural materials is limited, particularly for long service lives,
exposure to corrosive coolants and radiation damage, and for out-of-normal operating con-
ditions. Current practice develops design material properties through direct testing, which
necessarily limits the test durations and environmental conditions for which data is avail-
able. Empirical extrapolation helps extend this test database to longer component service
lives, but a better approach will be required for future advanced reactors. In particular, bet-
ter uncertainty quantification and the development of statistical design approaches for high
temperature structural components could lead to more efficient, economical component de-
signs by tailoring the design of the component to required component reliability, rather than
simply applying a constant, generally quite conservative, design margin to a large spectrum
of different components.

The work described here applies a physically-based model to help determine key mi-
crostructural characteristics leading to long-term creep deformation and failure in Grade 91.
This physically-based approach provides a natural method for quantifying uncertainty in key
material properties. If a model can relate microstructural features to material performance
then the distribution of these microstructural features can be linked to the expected distribu-
tion of critical material properties. The key point is that quantifying these microstructural
characteristics does not require long-term testing.

The current work builds on a deterministic crystal plasticity finite element method
(CPFEM) model for creep deformation and rupture in Grade 91 [3, 4] developed through
past work in the Advanced Reactor Technologies (ART) program. This past work developed
the model to make deterministic predictions for long-term creep in Grade 91. This model
has been transferred to the MOOSE framework and we use it here as a basis for a statistical,
microstructural model aimed at quantifying uncertainty in long-term properties.

This work is synergistic with companion work at LANL and INL. All the NEAMS struc-
tural efforts will ultimately end up as material models and methods in the Grizzly framework.
LANL is developing a similar microstructural model using a different numerical approach (the
crystal plasticity fast Fourier transform, CPFFT, approach) and developing fast surrogate
models to embed microstructurally-informed models in the Grizzly framework. The CPFFT
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approach is more numerically efficient and so better suited at addressing microstructural
uncertainties, for example through large numbers of Monte Carlo simulations. However, the
microstructural sensitivity in the model formulation developed here using CPFEM should
be directly relevant to LANL’s efforts as it concerns the identification of key microstructural
parameters, which are independent of the numerical simulation technique. Moreever, there
are benefits to maintaining two mesoscale simulation solvers, i.e. both CPFEM and CPFFT:

• CPFEM is better suited to model complex interfaces, including complicated grain
boundary geometries.

• Having two solvers means new features in one solver can be validated against the sec-
ond. The equivalance of the two simulation techniques for bulk polycrystal deformation
is not in doubt [5], but in particular, integrating grain boundary cavitation models into
CPFFT calculations requires the development of new numerical methods, which could
be validated against the well-established CPFEM discretization scheme.

• The CPFEM method builds off standard finite element methods and so improvements
to the CPFEM framework translate to generic FE improvements to Grizzly. Simi-
larly, the ANL CPFEM model uses the existing, well-developed MOOSE finite element
framework, for example for implementing the interface damage model.

A similar microstructural sensitivity study could be applied to deterministic microstruc-
tural creep-fatigue damage. Such a model is under development, currently through the ART
program. However, an early decision was made to focus the joint INL/ANL/LANL work on
creep rupture, at least for the first year of this new program on structural materials.

This report then describes two veins of work:

1. Improvements to the MOOSE/CPFEM framework specifically aimed at accomplishing
the microstructural sensitivity study.

2. The results of the sensitivity study, including the identification of the key microstruc-
tural properties contributing to creep damage in Grade 91.

Chapter 2 describes the development of a method for applying generic cell-average bound-
ary conditions to arbitrarily-shaped, periodic simulation cells obeying the Hill-Mandel con-
ditions. This allows us to use simulation volumes generated through periodic Voronoi tes-
sellation, avoiding “box-sided” simulation cells which introduce artificial grain boundary ge-
ometries. As described in Chapter 2, this required a fundamental restructuring of the large
deformation solid mechanics kernel in MOOSE to use a total Lagrangian formulation. This
work includes Section 2.5, which describes the implementation of a MOOSE MeshGenerator
that automatically detects periodic boundaries in periodic Voronoi tessellations.

Chapter 3 describes the incorporation of a large deformation cohesive zone framework
able to account for large area changes and rotations. As discussed in the chapter, the cohesive
zone framework has been developed using a total Lagrangian formulation and includes the
exact Jacobian. Chapter 4 is a quick overview of the constitutive models used to describe
deformation in the prior austenite grains and the grain boundary cavitation model. This is
not new work and the aim of this chapter is to provide the reader with enough information
to understand the results of the sensitivity analysis.
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Chapter 5 describes the methodology used to model the experimental uncertainty in the
creep-rupture life of Grade 91 steel. Section 5.1 identifies the key microstructural parameters
through sensitivity analysis and relates those parameters to the physics embedded in the
microstructural model. The sensitivity study shows that the controlling model parameter
is the grain boundary diffusivity. Section 5.2 describes how the sensitivity analysis results
are used to identify the model parameter distributions that explain the macroscale rupture
data. Results of this section show that accounting for the uncertainty of the grain boundary
diffusivity is sufficient to capture the experimental uncertainty of the creep-rupture life of
Grade 91.

Finally, Chapter 6 summarizes the work and describes the remaining work required to
account for additional sources of uncertainty, such as the second phase particle distribution
at the prior austenite grain boundaries.

ANL-20/49 3
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2 Large Deformation Hill-Mandel Cell Conditions in MOOSE

2.1 Objective

Figure 2.1 shows two notionally-identical simulation cells, intended for use as periodic repre-
sentative volumes in a microstructural simulation. Both were generated using the Neper [6]
tool for producing representative microstructures using periodic Voronoi tessellation. Both
microstructures have identical grain orientations and grain shapes within the cell. Both
are periodic in the sense that both cells will tile space. The difference is Figure 2.1(a) is
“box-sided” – the tessellation was truncated to make a cubic cell. Figure 2.1(b) is the fully
periodic tessellation.

This chapter discusses changes to MOOSE required to run simulations based on cells like
Figure 2.1(b). Figure 2.1 (c) and (d) illustrates the reason why. Box-sided cells introduce a
set of grain boundaries on the cell faces with an unphysical geometry — an entire plane of
aligned grain boundaries — whereas the true-periodic cells do not introduce similar sets of
planar boundaries. These artificial boundaries are not important for simulations including
only grain bulk deformation. However, they can be important for simulations with grain
boundary physics, like the creep cavitation model. The entire set of boundaries could, for
example, directly align with the applied stress, creating a weak plane in the simulated volume.

Running simulations with these types of cells, in the context of proper homogenization
theory, requires two conditions:

1. The cell obeys the classical Hill-Mandel condition.

2. A mechanism for enforcing arbitrary cell-averaged conditions on the simulation. Ideally
these conditions would include arbitrary combinations of stress and strain constraints
in different directions.

This chapter describes a mechanism for enforcing both conditions in MOOSE in the context
of large deformation kinematics.

The Hill-Mandel condition [7, 8] provides the necessary condition for the admissibility of
the homogenized stress and deformation fields:

〈σ : D〉 = 〈σ〉 : 〈D〉 (2.1)

where σ is the Cauchy stress, D is the deformation rate, and

〈X〉 =
1

V

∫
V

XdV . (2.2)

Typically, models enforce the Hill-Mandel constraint using boundary conditions on the sim-
ulation cell surface. There are many cell conditions that meet the Hill-Mandel condition,
but the most common are:

1. Uniform traction BC: σ · n = t̂

2. Uniform displacement BC: u = û

3. Periodic displacements: u+ − u− = 0, where + and − indicate two pairs of periodic
faces.
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Figure 2.1: Illustration of the potential problems with box-sided representative cells. (a)
Box-sided cell. (b) Equivalent true-periodic cell. (c) Periodic tiling of the box-sided cell
with the artificially implied grain boundaries highlighted. (d) Periodic tiling of the true-
periodic cell. The highlighted periodic grain boundaries are realistic.
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Periodic boundary conditions are often the most efficient in determining effective properties
from small representative volume elements. As such, this chapter seeks a solution that
imposes periodic conditions together with imposed cell-average constraints.

In addition to these boundary conditions some types of uniform cell conditions also satisfy
the constraint:

1. Uniform stress: the Ruess bound

2. Uniform deformation: the Voigt bound.

Superpositions of these conditions will also satisfy the Hill-Mandel condition.
For large deformations, cell-average constraints take the form:

σ̂ij =
1

V

∫
V

σijdV (2.3)

F̂ij =
1

V

∫
V

FijdV (2.4)

However, creep conditions impose a fixed dead load on the specimen, not a fixed Cauchy
stress. So instead, this chapter focuses on stress constraints of the type

P̂ij =
1

V

∫
V

PijdV (2.5)

where Pij is the first Piola-Kirchhoff stress, instead of the Cauchy stress in Eq. 2.3. Fixing
the first Piola-Kirchhoff stress imposes a constant dead load on the simulation cell.

Note that both deformation and stress constraints can be applied simultaneously provided
they are imposed in different directions (i.e. the indices ij are different). In addition, the cell
rigid body translation and rotations must be removed, as described in further detail below.

2.2 Enforcing cell average and Hill-Mandel conditions

2.2.1 Previous work

A previous version of the ANL model, embedded in a different solver (WARP3D, http://
www.warp3d.net/) implemented the cell average and Hill-Mandel constraints with a unified
approach, described in [9]. The idea is to enforce face-face constraints of the type:

u+ − u− =
(
F̂− I

)
· (X+ −X−) (2.6)

where X+ and X− are the coordinates of the periodic faces in the undeformed configuration.
The trick in this approach is to let the deformation conditions be extra, dummy degrees of
freedom, often implemented as dummy nodes in the finite element mesh:

u?ij = Fij − δij. (2.7)

With this formulation, applying Dirichlet boundary conditions to the dummy degrees of
freedom imposes cell-average deformation conditions, as Eq. 2.6 directly suggests, while
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imposing Neumann boundary conditions applies components of the volume-integrated first
Piola-Kirchhoff stress, i.e.

∫
V
PijdV .

The WARP3D implementation imposed Eq. 2.6 using multipoint constraints. Note the
conditions are true multipoint constraints as they will generally involve displacement compo-
nents from the two faces and the dummy degrees of freedom. The current MOOSE constraint
system is unsuited for implementing these types of conditions in 3D and so we examined
other approaches. These conditions can be rephrased as Lagrange multiplier constraints im-
posed on nonlinear equations describing the unconstrained cell. In theory, there is no reason
why this implementation should not work in MOOSE, using scalar kernels to impose the
Lagrange multiplier equations. However, a trial ANL implementation was not numerically
stable, and so we considered a third option.

2.2.2 New formulation

A superposition of conditions which individually meet the Hill-Mandel constraint also meets
the constraint. One way to enforce a combination of cell-average conditions and the Hill-
Mandel condition is to divide the displacement field into two components:

ui = uµi + uMi (2.8)

where the microdisplacement field (uµi ) obeys periodic boundary conditions and the macrodis-
placement field (uMi ) is affine with some imposed deformation, i.e.

uMi = GiJXJ . (2.9)

The constant deformation GiJ represents 6 (3D, small deformation theory) or 9 (3D, large
deformation theory) extra degrees of freedom. These extra degrees of freedom correspond
to the extra constraint equations required to set the cell average stress or deformation con-
ditions.

MOOSE already implements a version of this scheme to impose homogenization condi-
tions on cell simulations for small deformation kinematics. Unfortunately, extending this
implementation to large deformation kinematics is not trivial.

In theory, the additions to the MOOSE material and tensor mechanics kernel system are
straightforward. Whenever the gradient of the displacements

ui,J (2.10)

appears replace it with the expression

ui,J = uµi,J +Gm
iJ (2.11)

whereGm
iJ is a constant tensor field, represented with an appropriate number of ScalarVariables

in MOOSE. Note the deformation gradient simply becomes

FiJ = δiJ + ui,J = δiJ + uµi,J +Gm
iJ . (2.12)

The implementation supplements this addition to the model kinematics with the appropriate
number of cell-average constraints. Deformation and stress constraints can be mixed and
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Kinematics
Dimension
1 2 3

Small 1 3 6
Large 1 4 9

Table 2.1: Number of extra scalar degrees of freedom and corresponding cell average con-
straints required for different cell formulations.

matched, provided they are imposed on different components of the cell-average quantities.
These constraints are imposed using MOOSE ScalarKernels with the residuals:

R̂ij =
1

V

∫
V

FiJdV − F̂iJ = 0 (2.13)

R̂ij =
1

V

∫
V

PiJdV − P̂iJ = 0 (2.14)

where the first Piola-Kirchhoff stress can be calculated from the deformation gradient and
the Cauchy stress

PiJ = JσikF
−1
Jk . (2.15)

These constraints, in addition to periodic and rigid body constraints on the microdisplace-
ment field (uµi ), are sufficient to fully-constrain the cell.

This framework works for 1D, 2D, and 3D models and for either small deformation or
large deformation kinematics. The only changes are the dimension of the extra gradient
tensor, Gm

iJ , and the difference between a symmetric gradient (small deformations) or an
unsymmetric gradient (large deformations). Table 2.1 outlines the required number of extra
degrees of freedom, corresponding to the Cartesian entries in the appropriate type of Gm

iJ

tensor, which equals the number of required cell-average constraints.
In MOOSE, we implemented the additional gradient term in the strain calculator, up-

dated the Jacobian terms, added the extra degrees of freedom for the extra gradient as
ScalarVariables, and imposed the cell average constraints as ScalarKernels (with the
appropriate on- and off-diagonal Jacobian terms). In practice, the constraints are easier to
implement as simple volume integrals, i.e. constraints of the form

R =
1

V

∫
V

CdV − Ĉ = 0 (2.16)

can be rewritten as

R =

∫
V

(
C − Ĉ

)
dV = 0. (2.17)

This changes the interpretation of the constraint residual, but not the final constraint.

2.2.3 Problems with the basic formulation

Thus far, the formulation described here could be implemented with minimal changes to
the existing MOOSE small deformation system for imposing homogenization constraints.
However, there are several implementation challenges.
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2.2.3.1 Interface formulation

In addition to the standard large deformation solid mechanics, the creep simulations in-
clude an interface model implemented in the MOOSE Discontinuous Galerkin system. This
interface kernel takes as input the displacement jump across some internal interface:

JuiK = ulefti − urighti (2.18)

and reports the corresponding interface traction. However, recall that we impose the cell
average constraints using an extra gradient term and not the corresponding affine displace-
ment field. How does this affect the interface formulation, which works with displacements
and not gradients?

In the end, the gradient-based implementation does not affect interface formulations of
this type. By definition the macro displacement field is affine, which means

Jumi K = 0 (2.19)

for any interface in the simulation. This implies that any interface displacement jumps are
part of the microdisplacement field. These displacements feed the interface formulation and
so the interface model remains consistent with the Hill-Mandel conditions and the macroscale
cell average constraints.

2.2.3.2 Rigid body modes

Rigid body modes can exist in both the macro- and microdisplacement fields. The user must
remove the rigid translation and rotation modes for the microdisplacement field manually,
for example by constraining a sufficient number of nodal displacements to eliminate rigid
translation and rotation.

The macrodisplacement field does not admit rigid translations, as it arises from the extra
gradient term. However, for large deformation kinematics it may contain rigid rotations in
2D or 3D. These can be removed by constraining the deformation represented by one of the
single (2D) or three (3D) off diagonal pairs

2.2.3.3 Mechanics kernel

The MOOSE mechanics system uses an updated Lagrangian formulation. This approach
formulates the equilibrium conditions in the current configuration and relies on calculating
gradients with respect to the current coordinates by using the updated coordinates

x = X + u (2.20)

This type of formulation uses the MOOSE use_displaced_mesh option to maintain the
appropriate updated geometry. However, when applying the homogenization constraints
using the extra gradient term the affine displacements are not calculated or included in
the displacement field MOOSE uses to update the current coordinates. This means the
kernel will not include the effect of the constant gradient field in calculating the equilibrium
conditions in the current frame, nor will displacements with respect to the current coordinates
include the effect of the extra gradient term. These issues must be corrected to have a fully-
consistent, large-displacement homogenization system.
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2.3 Total Lagrangian kernel

We elected to rewrite the MOOSE large displacement solid mechanics kernel system to refer
only to the reference configuration (i.e. a total Lagrangian formulation). This eliminates the
need for the use_displaced_mesh flag and means that the effects of the extra homogeniza-
tion gradient term are included in the kinematic formulation.

2.3.1 Residual equation

The residual equation for the total Lagrangian formulation is

Rα =

∫
V

Jσijφ
α
i,KF

−1
KjdV (2.21)

where J = detF and φ are the test functions. This formulates the equilibrium condi-
tions in the undeformed configuration and only requires gradients with respect to the initial
coordinates. Therefore, the total Lagrangian kernel will integrate correctly with the homog-
enization described above.

It is more common when working with a total Lagrangian formulation to note that

JσijF
−1
Kj = PiK (2.22)

and so

Rα =

∫
V

PiKφ
α
i,KdV = 0 (2.23)

and then make the constitutive model system responsible for returning the first Piola-
Kirchhoff stress instead of the Cauchy stress. However, both the NEML and MOOSE consti-
tutive model systems return the Cauchy stress and so our implementation keeps the longer,
Cauchy stress form of Eq. 2.21. This means that the material systems for the original,
updated formulation and the new, total formulation are the same. Two otherwise-identical
problems using the two different kernel approaches should produce exactly the same results.

2.3.2 Jacobian terms

In the following Υβ are the discrete nodal displacements and ψ are the trial functions.
The Jacobian has three terms:

∂Rα

∂Υβ
=

∫
V

(
∂J

∂Υβ
σijφ

α
i,KF

−1
Kj + J

∂σij
∂Υβ

φαi,KF
−1
Kj + Jσijφ

α
i,K

∂F−1
Kj

∂Υβ

)
dV (2.24)

which we label for convenience:

Jαβ =

∫
V

Aαβ +Bαβ + CαβdV (2.25)

Working term-by-term:

Aαβ = JF−1
Lk ψ

β
k,Lσijφ

α
i,KF

−1
Kj (2.26)
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Bαβ = JCijmnF
(n)
mAF

−1
As F

−1
Tnψ

α
s,Tφ

α
i,KF

−1
Kj (2.27)

which we could write

Bαβ = JCijmnf
−1
msF

−1
Tnψ

α
s,Tφ

α
i,KF

−1
Kj (2.28)

and finally

Cαβ = Jσijφ
α
i,K

∂F−1
Kj

∂FmN

∂FmN
∂Υβ

= Jσijφ
α
i,K

∂F−1
Kj

∂FmN
ψβm,N (2.29)

Cαβ = −Jσijφαi,KF−1
KmF

−1
Njψ

β
m,N (2.30)

We can combine the first and last terms and make simplifications:

Aαβ + Cαβ = JF−1
Lk ψ

β
k,Lσijφ

α
i,KF

−1
Kj − Jσijφαi,KF−1

KmF
−1
Njψ

β
m,N (2.31)

Aαβ + Cαβ = Jφαi,KF
−1
Kjσijψ

β
k,NF

−1
Nk − Jφαi,KF−1

Kmσijψ
β
m,NF

−1
Nj (2.32)

Aαβ + Cαβ = Jσij

(
ψβi,MF

−1
Mjφ

α
k,NF

−1
Nk − ψβi,MF−1

Mkφ
α
k,NF

−1
Nj

)
(2.33)

Aαβ + Cαβ = Jψβi,Mσijφ
α
k,N

(
F−1
MjF

−1
Nk − F−1

MkF
−1
Nj

)
(2.34)

If we define:

Φα
i,j = φαi,kF

−1
k,j (2.35)

Ψβ
i,j = ψβi,kF

−1
k,j (2.36)

then we have:

Bαβ = JCijmnf
−1
mkΨ

β
k,nΦα

i,j (2.37)

Aαβ + Cαβ = Jσij

(
Ψβ
i,jΦ

α
k,k −Ψβ

i,kφ
α
k,j

)
(2.38)

2.3.3 Verification

As noted above, the updated and total Lagrangian kernels should produce identical results
for identical problems. Defining a verification case is straightforward as the two models can
use the same materials, boundary conditions, etc.

Figure 2.2 presents a simple verification case. The simulation deforms a 3D block of
material into a π/4 angle bend. The material model is a simple rate-independent elastic-
plastic model with Voce isotropic hardening. Subfigures (a) and (b) show the deformed
geometry at the same time for the current updated Lagrangian and new total Lagrangian
formulations. Subfigure (c) plots the total dissipated work as a function of time, again for
the updated and total Lagrangian formulations. Subfigures (a) and (b) are identical and the
two lines in (c) exactly overlap, verifying the total Lagrangian kernel.
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(a) (b) (c)

Figure 2.2: Comparison between the updated and total Lagrangian formulations for a simple
forming problem. (a) Deformed shape for the updated Lagrangian formulation. (b) Deformed
shape for the total Lagrangian formulation. (c) Total dissipated energy (work) plotted as a
function of bend angle for the two formulations. The two lines exactly overlap.

(a) (b)

Figure 2.3: (a) Simple truncated octahedron cell for the verification calculation. (b) Demon-
stration that the cell remains periodic after significant deformation.
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(a) First Piola-Kirchhoff stress.
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(b) Deformation

Figure 2.4: Plots of the cell-average stress and deformation, demonstrating that the model
obeys the imposed constraints.

2.4 Verification

Figure 2.3(a) shows a simple periodic cell consisting of 8 randomly oriented grains. The cell
geometry is simple, but deliberately setup to not have simple Cartesian periodicity. The
3D model applies the homogenization system for large deformations with mixed constraints:
three zero deformation constraints to remove rigid rotations, three average stress constraints,
and three average deformation constraints. Figure 2.3(b) shows the deformed unit cell and
demonstrates that after deformation the cell remains periodic. Note that only the microdis-
placements appear in the deformed volume rendering, as the macrodisplacements are never
explicitly calculated. However, the macrodisplacement field is clearly periodic as it is affine
with the imposed gradient.

Finally, Figures 2.4(a) and (b) demonstrate that the average stress and deformation con-
ditions match the applied values. Subfigure (a) plots the cell-average 1st Piola-Kirchhoff
stress; subfigure (b) plots the average deformation (F − I). The constrained values appear
as black lines in the diagrams. These were ramped linearly. The figures plot the uncon-
strained values in blue. The cell averages match the constrained values, thus verifying the
homogenization system.
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Figure 2.5: Render of a synthetic periodic microstructures with 100 grains, generated with
Neper, colored by grain number.

2.5 Identification of periodic boundaries

MOOSE enforces periodic boundary conditions by imposing periodicity of a variable value
on periodic domain boundaries. For a rectangular cuboid cell MOOSE can identify the six
periodic cell boundaries, and automatically choose the correct periodic pairs. However, for
more complex periodic cell types the automatic periodic boundary detection feature can not
be used. Neper [6] generates complex periodic cell shapes like the one depicted in Figure
2.5.

Furthermore, the periodic unit cells generated by Neper possess multiple periodic, non-
flat, surfaces which can be characterized by the following families of translation directions:

• 〈001〉,

• 〈011〉,

• 〈111〉.
The set of of all translation vector is obtained by applying the 24 cubic symmetries to all
the translation vector families and retaining the linearly independent set. This operation
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generates a set of 13 independent translation vector. Each translation vector is associated to
a pair of periodic, non-flat surfaces. In finite elements, a surface is represented by a collection
of element sides. Each element side is characterized by a set of nodes. Therefore, given a
specific translation direction, d two sides, s1 and s2, are periodic if the nodes describing them
are translated by a distance d.

Given the above, a pseudo algorithm to identify periodic boundaries is the following:

1. find all the nodes on the surface of the periodic cell

2. for each node i loop over all the nodes, j, and check if they are periodic for any of the
thirteen translation vector dk. If the node pair is periodic for direction dk, add node i
to the list of nodes associated to the primary side of dk, and add node j to the list of
nodes associated the secondary side of dk. This process will generate a set of twenty
six node sets.

3. for each node set, identify all the element-sides belonging to it and add them the
associated side-set.

Neper can generate periodic meshes that can be directly used as an input for MOOSE.
Therefore to automate the process of creating periodic boundaries we develop a mesh gen-
erator in MOOSE that identifies periodic boundaries, and automatically set all the required
periodic boundary conditions. Figure 2.6 is an example showing the identified periodic,
non-flat boundaries.

We plan to merge this tool into MOOSE proper.
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Figure 2.6: Render of a synthetic periodic microstructures highlighting the identified periodic
surfaces. Different colors are associated to different periodic surfaces.

ANL-20/49 17





Identify the influence of microstructure on mesoscale creep and fatigue damage
September 2020

3 Large deformation cohesive zone model in MOOSE

Libmesh [10], which is the finite element library on which MOOSE is built on [11] , does not
support conventional interface elements. Therefore Messner et al. [12] utilized an elementless
discontinuous Galerkin approach for cohesive zone modeling in MOOSE. Rovinelli et al.
[13] successfully used this method to perform physics-based crystal plasticity simulation,
including grain boundary cavitation, to investigate the ability of different effective stress
measures to predict the creep life of Grade 91 steel. However, the cohesive zone model
currently available in MOOSE does not account for large interface area changes and rotations.
Creep rupture in ductile materials, such as Grade 91, occurs with area reduction factors
grater than 80% [14], thus justifying the need for large deformation cohesive zone model in
MOOSE.

To implement any large deformation constitutive model the deformation gradient F must
be known. In general F can be computed at any integration point by using nodal displace-
ments and shape functions. Standard cohesive zone modeling is not an exception as it relies
on the knowing F on the cohesive interface. The cohesive interface is generally modeled
with cohesive elements [15]. Cohesive elements are a special type of zero-thickness elements
providing integration points on their mid-plane. Most large deformation implementations
use the mid-plane to define the cohesive separation law, which carries over to discontinuous
Galerkin approaches [16]. These implementations also enforce traction equilibrium on the
midplane.

However, the MOOSE DG formulation integrates over the element sides, which is a
challenge for large deformations. The lack of integration points on the mid-plane forced us
to use an assumption to recover the deformation gradient on the interface mid-plane. As a
first order approximation we assume the deformation gradient on the mid-plane, F ∗, to be
the average of the deformation gradient on the + and − surfaces:

F ∗ =
F+ + F−

2
. (3.1)

Figure 3.1 is a schematic representing the cohesive interface, ∗, and the surfaces of the
two elements generating the cohesive interface together with the available quadrature points.

For large deformation problems, MOOSE allows equilibrium to be imposed on both the
deformed or the undeformed mesh. When solving a solid mechanics problem one has to
satisfy both the linear and angular momentum equilibrium. For equilibrium applied on
the undeformed configuration angular momentum is automatically satisfied because of the
zero thickness interface assumption. If the formulation imposes equilibrium in the deformed
configuration angular momentum conservation must be enforced with constraints on the co-
hesive constitutive model. Note the analogy here with conventional solid mechanics: total
Lagrangian formulations impose equilibrium in the undeformed configuration working with
the 1st Piola-Kirchhoff stress, which is a general rank 2 tensor. Updated Lagrangian formu-
lations enforce equilibrium in the deformed configuration but the constitutive model must
maintain a symmetric Cauchy stress to conserve angular momentum. We elected to use a
total Lagrangian formulation. The total Lagrangian formulation requires a map between the
first Piola-Kirchoff traction, T , the Cauchy’s traction t and the infinitesimal force df . The
following relationship defines the equivalence between, df , T and t:

df = TdS = tds (3.2)
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Figure 3.1: Two dimensional schematic depicting the three surface, denoted by +, − and
∗ symbols, used in the large deformation cohesive zone model along with the locations of
the available integration points, e.g. blue squares. The + and − surfaces are the surfaces of
two adjacent elements defining the cohesive interface. The ∗ surface represents the cohesive
interface mid-plane. Notice that, the +, − and ∗ surfaces are coincident in the undeformed
configuration but they are drawn as separated for illustration purposes.

where dS is the infinitesimal area in the undeformed configuration, and ds is the infinitesimal
area in the deformed configuration. Both dS and ds are scalars in Equation 3.2.

The relationship between the first Piola-Kirchoff traction and the Cauchy’s traction can
be rewritten as

T = t
ds

dS
(3.3)

The objective traction rate is obtained by taking the time derivative of Equation 3.3:

Ṫ =
1

dS

(
dṡt+ dsṫ

)
(3.4)

Constitutive cohesive material models are defined as the normal and shear traction rate as
function of the normal and shear displacement jump rates, tI

(
Ju̇KI

)
. However, equilibrium is

imposed using a traction defined in the global reference system. Therefore a transformation
between the interface and the global coordinate system must be specified. In the undeformed
configuration, the interface coordinate system can be defined as:

Q0 =
[
N,S1, S2

]
(3.5)

where N is the interface normal in the undeformed configuration, and S1 and S2 are two
arbitrary orthogonal directions in the interface plane.

To account for large rotations, the rotation of the interface mid-plane must be considered.
By realizing that the interface coordinate system rigidly rotates following the interface mid-
plane, the total rotation matrix required to transform a vector from the interface to the
global coordinate system is:

Q = Q0R
T (3.6)
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where R is the rotation matrix accounting for the interface mid-plane rotation. The rotation
matrix Q can be used to rotate the displacement jump and the traction from the deformed
interface coordinate system to the global coordinate system as:

JuK = QT JuKI . (3.7)

t = QT tI . (3.8)

By differentiating Eq. 3.7 and 3.8 with respect to time one obtains:

Ju̇K = Q̇T JuKI +QT Ju̇KI . (3.9)

ṫ = Q̇T tI +QT ṫI . (3.10)

Finally, substituting 3.8 and 3.10 in Eq. 3.4 one obtains:

Ṫ =
ds

dS

((
dṡ

ds
QT + Q̇T

)
tI +QT ṫI

)
. (3.11)

Notice that Eq. 3.11 reduces to Ṫ = QT ṫI = ṫ when large rotation and area changes are
neglected (e.g., when dṡ = Q̇T = 0 and ds

dS
= 1), which is a consistency check. Equation

3.11 embeds all the kinematics, thus decoupling the kinematics from the traction-separation
constitutive equation. The traction separation constitutive equation is assumed to be defined
in the interface mid-plane in the deformed configuration.

Decoupling the kinematics and constitutive equations greatly eases the implementation
of custom traction separation laws because the only terms that need to be defined are:

• the material constitutive rate equations in the interface coordinate system and ṫI
(
Ju̇KI

)
,

• the total derivatives of interface traction rates with respect to the interface displace-

ment jump,
dṫIi
dJu̇KIj

.

Equation 3.11 was implemented in the MOOSE cohesive zone model material system using
the following incremental formulation:

∆T =
ds

dS

((
∆ds

ds
QT + ∆QT

)
tI +QT∆tI

)
. (3.12)

3.1 Implementation in MOOSE

3.1.1 Cohesive model residual

The residual equation for the total Lagrangian cohesive zone formulation for the displacement
component i can be written as:

Rα,+
i = −

∫
S

Ti (JuK)i φ
α,+
i dS (3.13)

Rα,−
i =

∫
S

Ti (JuK)i φ
α,−
i dS (3.14)
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(3.15)

where α is the test function index and φ+ and φ− are the test function associated to the +
and − surfaces, respectively. Notice that in the above equation i is not a summation index,
but represents the coordinate i.

3.1.2 Cohesive model Jacobian

The Jacobian is the derivative of the residual with respect to the discrete displacements
Υβ. The traction on each side of the interface is a function of the displacement jump, JuK,
therefore the residual on both element faces is function of the displacement on both sides of
interface. This then requires the derivatives

dRα,+
i

dΥβ,+
j

= −
∫
S

dTi (JuK)φα,+i

dΥβ,+
j

dS = −
∫
S

d∆Ti (JuK)
dΥβ,+

j

φα,+i dS (3.16)

dRα,+
i

dΥβ,−
j

= −
∫
S

dTi (JuK)φα,+i

dΥβ,−
j

dS = −
∫
S

d∆Ti (JuK)
dΥβ,−

j

φα,+i dS (3.17)

dRα,−
i

dΥβ,+
j

=

∫
S

dTi (JuK)φα,−i
dΥβ,+

j

dS =

∫
S

d∆Ti (JuK)
dΥβ,+

j

φα,+i dS (3.18)

dRα,−
i

dΥβ,−
j

=

∫
S

dTi (JuK)φα,−i
dΥβ,−

j

dS =

∫
S

d∆Ti (JuK)
dΥβ,−

j

φα,+i dS (3.19)

In writing Eqs. 3.16 - 3.19 we have implicitly noticed that: i) dS is constant, ii) the test
functions φα are independent from the discrete displacements, iii) Ti = Told,i + ∆Ti, and iv)
Told,i is independent from the discrete displacements.

We start by recalling the finite element discretization for a variable:

u ≈ uh =
∑
β

Υβψβ (3.20)

where ψ indicates the trial function. By utilizing the displacement jump definition and the
finite element discretization, the displacement jump for the coordinate i can be expressed
as:

JuKi = u−i − u+
i ≈

∑
β,−

Υβ,−
i ψβ,−i −

∑
β,+

Υβ,+
i ψβ,+i (3.21)

The derivative of the displacement jump with respect to the discrete displacements can be
approximated as:

dJuKi
dΥβ,−

j

≈ ψβ,−i if i = j, else 0 (3.22)

dJuKi
dΥβ,+

j

≈ −ψβ,+i if i = j, else 0 (3.23)

(3.24)
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where δij is the Kronecker delta. By noticing that the deformation gradients can be approx-
imated as:

F+
ij ≈ δij +

∑
β

Υβ,+
i ∇ψβ,+ij (3.25)

F−ij ≈ δij +
∑
β

Υβ,−
i ∇ψβ,−ij (3.26)

where δij is the Kronecker delta. By using equation 3.1 the derivatives of F ∗ with respect
to the discrete displacements becomes:

dF ∗ij

dΥβ,−
k

≈ 1

2
∇ψβ,−ij if k = i, else 0 (3.27)

dF ∗ij

dΥβ,+
k

≈ 1

2
∇ψβ,+ij if k = i, else 0 (3.28)

To simplify the Jacobian development, we define the following quantities:

A =
ds

dS
(3.29)

B =

(
∆ds

ds
QT + ∆QT

)
(3.30)

C = QT (3.31)

and use them to rewrite Eq. 3.12 as:

∆T = A
(
BtI + C∆tI

)
(3.32)

(3.33)

From Eqs. 3.16 - 3.19 is apparent that computing the Jacobian implies computing the
following derivatives:

d∆Ti (JuK)
dΥβ,+

j

=
d

dΥβ,+
j

(
A
(
Bikt

I
k + Cik∆t

I
k

))
(3.34)

d∆Ti (JuK)
dΥβ,−

j

=
d

dΥβ,−
j

(
A
(
Bikt

I
k + Cik∆t

I
k

))
(3.35)

By using the chain rule and doing some manipulation we obtain the following equations:

d∆Ti (JuK)
∂Υβ,+

j

=
∂A

dΥβ,+
j

(
Bikt

I
k + Cik∆t

I
k

)
+ A

(
∂Bik

∂Υβ,+
j

tIk +
∂Cik

∂Υβ,+
j

∆tIk + (Bik + Cik)
∂∆tIk
∂Υβ,+

j

)
(3.36)

d∆Ti (JuK)
∂Υβ,−

j

=
∂A

dΥβ,−
j

(
Bikt

I
k + Cik∆t

I
k

)
+ A

(
∂Bik

∂Υβ,−
j

tIk +
∂Cik

∂Υβ,−
j

∆tIk + (Bik + Cik)
∂∆tIk
∂Υβ,−

j

)
(3.37)
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The remaining partial derivatives of A, B, and ∆tI can be computed by exploiting the
chain rule again:

∂A

∂Υβ,+
j

=
∂A

∂F ∗rs

∂F ∗rs

∂Υβ,+
j

∂A

∂Υβ,−
j

=
∂A

∂F ∗rs

∂F ∗rs

∂Υβ,−
j

(3.38)

∂Bik

∂Υβ,+
j

=
∂Bik

∂F ∗rs

∂F ∗rs

∂Υβ,+
j

∂Bik

∂Υβ,−
j

=
∂Bik

∂F ∗rs

∂F ∗rs

∂Υβ,−
j

(3.39)

∂Cik

∂Υβ,+
j

=
∂Cik
∂F ∗rs

∂F ∗rs

∂Υβ,+
j

∂Cik

∂Υβ,−
j

=
∂Cik
∂F ∗rs

∂F ∗rs

∂Υβ,−
j

(3.40)

∂∆tIk
∂Υβ,+

j

=
∂∆tIk
∂J∆uKIr

∂J∆uKIr
∂JuKs

∂JuKs
∂Υβ,+

j

∂∆tIk
∂Υβ,−

j

=
∂∆tIk
∂J∆uKIr

∂J∆uKIr
∂JuKs

∂JuKs
∂Υβ,−

j

(3.41)

The partial derivatives of F ∗ and JuK with respect to the discrete displacements have
already been defined in Eqs. 3.22, 3.23, 3.27 and 3.28. The partial derivative of tI with
respect to JuKI is a material dependent derivative and will not be discussed here. By using
Nanson’s Formula and adopting other kinematics identities we can recast A,B and C as
follows:

A =
ds

dS
= det (F )||F−TN || (3.42)

B =

(
∆ds

ds
QT + ∆QT

)
=
(

trace (L)− n · (Ln)
)
RQT

0 + ∆RQT
0 (3.43)

C = QT = RQT
0 (3.44)

where we dropped the superscript ∗ of F to simplify the notation.
We start by computing ∂C

∂F
as:

∂Cij
∂Frs

=
∂Rik

∂Frs
QT

0,kj (3.45)

where the partial derivative of the rotation matrix can be computed using the formula
proposed by Chen and Wheeler [17]:

∂Rkl

∂Fmn
=

Rkp

det
(
Ū
) (ŪpqRmqŪnl − ŪpnRmqŪql

)
(3.46)

where Ū = trace (U) I − U . The incremental model also requires to compute ∂∆Rkl

∂Fmn
. In the

implementation we used a linear rotation approximation therefore ∆R = R−Rold. Noticing
that

∂Rold,kl

∂Fmn
= 0 we obtain

∂∆Rij

∂Frs
=
∂Rij

∂Frs
(3.47)

The next term we analyze is ∂A
∂F

:

∂A

∂Fpq
=
∂ det (F )

∂Fpq
||F−TN ||+ det (F )

∂||F−TN ||
Fpq

(3.48)
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The derivative of the determinant is

∂ det (F )

∂Fij
= det (F )F−Tij (3.49)

The derivative of the norm can be computed by realizing that the derivative of the norm of
a vector with respect to its component is:

∂||V ||
∂Vi

=
Vi
||V || (3.50)

and that the derivative of the inverse of a tensor with respect to its components is:

∂T−ij
∂Tpq

= T−ipT
−
qj (3.51)

By using Eqs. 3.49, 3.50 and 3.51 and substituting in Eq. 3.48 we obtain:

∂A

∂Fpq
= det (F )F−Tpq ||F−TN ||+ det (F )

F−Tik Nk

||F−TN ||F
−
jpF

−
qiNj (3.52)

The other term for which we need to compute the partial derivatives is ∂B
∂F

. By expanding
the partial derivatives and using the definition and derivatives of C (Eqs. 3.44 and 3.45) we
obtain:

∂Bij

∂Fpq
=

(
∂ trace (L)

∂Fpq
− ∂ (nrLrsns)

∂Fpq

)
Cij +

(
trace (L)− nrLrsns

)∂Cij
∂Fpq

+
∂Cij
∂Fpq

(3.53)

In the incremental formulation L = I − FoldF− hence by using Eq. 3.51 we obtain.

∂Lij
∂Fpq

= −Fold,ikF−kpF−qj . (3.54)

By noting the derivative of the trace of tensor with respect to its components is δij and using
Eq. 3.54 the identity matrix, we can compute the derivate of velocity gradient with respect
to the deformation gradient as:

∂ trace (L)

∂Fpq
=
∂ trace (L)

∂Lij

∂Lij
∂Fpq

= −δijFold,ikF−kpF−qj (3.55)

Now we are left with computing the derivative of the second term inside the parentheses in
Eq. 3.53. By recalling that ni = RijNj and substituting we obtain:

∂ (nrLrsns)

∂Fpq
=
∂Rri

∂Fpq
NiLrsRsjNj +Rri

∂Lrs
∂Fpq

RsjNj +RriNiLrsRsj
∂Rsj

∂Fpq
Nj (3.56)

where the partial derivatives on the right hand side can be computed using Eqs. 3.46 and
3.54.

To complete the Jacobian definition, we need to compute the derivative of ∂J∆uKI

∂JuK present
in Equation 3.41. By using Eq. 3.7 we can write:

∂J∆uKIi
∂JuKj

=
∂ (∆QikJuKk +QikJ∆uKk)

∂JuKj
= ∆Qikδkj +Qikδkj = ∆Qij +Qij (3.57)

where ∆Q = Q0∆RT . The complete Jacobian can now be computed by assembling all the
derivates that has been identified in this section.
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3.2 Validation

Validation of the objective traction rate was performed by using a simple linear elastic
traction separation law:

∆Ti = KijJ∆uKIj (3.58)

where K is the interface stiffness matrix and is defined as:

K =

KN , 0, 0
0, KS, 0
0, 0, KS

 (3.59)

with KN = 1 · 107 MPa/mm and KS = 1 · 107 MPa/mm. The solid elements have been modeled
using isotropic elasticity with a Young’s modulus of E = 1 · 104 MPa and a Poisson’s ratio of
ν = 0.3. The values of the interface stiffness and bulk material properties have been selected
to allow deformations mainly in the bulk material.

3.2.1 Objective traction rate validation

To validate the objective traction rate formulation we compare two cases: i) one with a
cohesive interface, and ii) one without. If the traction objective rate is correct introducing
a very stiff interface should not change the simulation results. Furthermore to check both
large rotations and large area changes, the simulation includes an initial axial strain up to
an axial strain of 1 in the loading direction (z) and then a rigid rotation of 90 ◦ around the y
axis (see Figure 3.2). We compare both the first Piola-Kirchoff traction, T and the Cauchy’s
traction t. Figures 3.3 and 3.4 compares the first Piola-Kirchoof traction and Cauchy’s
traction for the two cases described above. The results of the two simulations are identical
thus confirming the correct implementation of the model and the validity of Eq. 3.1.

3.2.2 Cohesive zone model Jacobian validation

To evaluate the accuracy of the analytical Jacobian we utilized a classic patch test. We used
the same material and interface model described in the previous section with similar loading
conditions (stretch and subsequent rotation). The patch test mesh is depicted in Figure 3.5
To ensure the correctness of the implemented analytic Jacobian we compared the converge
rate for two simulations using: i) the implemented analytic Jacobian, and ii) the Jacobian
computed using finite differences. If for a patch test the same convergence rate are observed
for both cases then the analytic Jacobian is correct. Comparison of the number of nonlinear
iterations required to achieve convergence using both kinds of Jacobians are presented in
Table 3.1. The analytic Jacobian requires the same number of nonlinear iterations, therefore
we conclude that the analytic Jacobian has been correctly implemented.
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Figure 3.2: Rendering of the simulation without the CZM interface at different point in
time. Axial stretching starts at time = 0 and ends a time = 1 . The 90 ◦ rigid body rotation
around the y axis starts at time = 1 and ends a time = 2 . The highlighted surface shows
where the traction are computed.

ANL-20/49 27



Identify the influence of microstructure on mesoscale creep and fatigue damage
September 2020

Figure 3.3: Comparison of the First Piola-Kirchoff traction for the two simulations with and
without cohesive zone linear elastic model. Loading conditions are described in Figure 3.2.
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Figure 3.4: Comparison of the Cauchy traction for the two simulations with and without
cohesive zone linear elastic model. Loading conditions are described in 3.2.
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Figure 3.5: Render of the patch test mesh used to check the correctness of the implemented
analytic Jacobian. Cohesive interfaces have been inserted between each and every element.
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step FDJ iterations AJ iterations
1 3 3
2 3 3
3 3 3
4 3 3
5 4 4
6 4 4
7 4 4
8 4 4

Table 3.1: Comparison of number of nonlinear iteration required to achieve convergence
when using: i) the finite difference calculated Jacobian (column FDJ), and ii) the analytic
Jacobian (column AJ).
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4 Constitutive models

4.1 The prior austenite grain model

Creep cavity nucleation and growth predominantly occurs along prior austenite grain (PAG)
boundaries in Grade 91. Therefore the crystal plasticity constitutive model ignores Grade
91 sub-grain structure. The framework used to model the deformation of the PAG is NEML
[18]. NEML is a framework developed at Argonne National Laboratory and is compatible
with MOOSE [11].

Following the example of Nassif et al. [3] our model uses isotropic elasticity to describe
the elastic behavior of the grain bulk, a crystal plasticity based model to incorporate defor-
mation caused by dislocation glide, and an isotropic plasticity-based model to incorporate
diffusion creep. References [3, 4] describe this model in detail. This chapter summarizes key
features. Both the crystal plasticity model and the isotropic plasticity model contribute to
the symmetric part of the total plastic velocity gradient Dp as:

Dp = Ddiff +Dcp (4.1)

The following equations describe the dislocation contribution to the deformation rate:

Dcp = sym (Lcp) (4.2)

Lcp =
12∑
s=1

γ̇s (ms ⊗ ns) (4.3)

γ̇s = γ̇0

(
τ s

τ̃

)n
(4.4)

τ̃ = τ0 + τw (4.5)

τ̇w = θ0

(
1− τw

τsat

) Nss∑
s=1

|γ̇s| (4.6)

where s is the slip system index, ns is a slip system unit normal, ms is a slip system unit
direction vector, τ s is the resolved shear stress, γ̇s the slip system shear rate, τ̇w is the slip
resistance rate, and Nss is the number of slip systems. For all the simulations in this work
we will consider only the 12 slip systems belonging to the {111}〈1̄10〉 family.

The contribution of the diffusional creep term to the plastic velocity gradient is:

Ddiff = AσVM · s (4.7)

where s is the deviatoric part of the Cauchy stress, σ, σVM is the von Mises stress, and A is
the diffusion constant. All the base model parameters values are presented and described in
Table 4.1.
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symbol description value units
E Young’s modulus 150 · 103 MPa
ν Poisson’s ratio 0.285 unitless
n Voce hardening exponent 12 unitless
τ0 initial slip resistance 40 MPa
τsat saturation slip resistance 12 MPa
θ0 slip hardening constant 66.67 unitless
γ̇0 prefactor 9.55 · 10−8 unitless
A Diffusional creep constant 1.2e · 10−9 unitless

Table 4.1: Grain bulk material parameters.

4.2 Grain boundary cavitation model

The grain boundary cavitation model is an improvement from the one described by Nassif
et al. [3]. This model was initially conceived by Sham and Needleman [19] and later extended
by Van Der Giessen et al. [20] to higher triaxiality regimes. There are several improvements
to the model versus the version described in [3]:

• The model described in this work uses a viscoelastic traction separation law, thus
allowing to correctly account for the instantaneous response of the material to sudden
load changes. This is true for both opening and sliding traction (see Eq. 4.10).

• The high triaxiality cavity growth branch used to incorporate the cavity coalescence
behavior was neglected. As explained in [13] the equation describing coalescence are
not always stable and return unphysical results for situation they were not conceived
for.

• According to the continuous cavity nucleation concept, the cavity nucleation criterion
was modified to be a one time check (see Eq. 4.9). Once the criterion has been
satisfied once during the loading history, cavities can nucleate continuously under a
positive opening traction 4.9.

• To enforce physical constraints on the state variables the material model uses Lagrange
multiplier[21].

• To prevent the insurgence of unphysical traction oscillations related to grain inner-
penetration the model utilize a continuous, quadratic-penalty approach [21].

These improvements were developed as part of another project, but they are included in
the model used in the sensitivity and uncertainty quantification studies described in Chapter
5.

The continuous cavitation grain boundary model accounts for cavities growth and cavity
nucleation. Cavity growth is described by the evolution of the cavity half radius, a. The
cavity average area density, N , is geometrically related to the average cavity half spacing,
b, by N = 1√

πb2
[3]. Figure 4.1 is a schematic depicting the physical meaning of cavity half

spacing and cavity half radius variables.
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Figure 4.1: Schematic representing the physical meaning of the grain boundary cavitation
model state variables. The variable a represents the average cavity half radius, and the
variable b represents the average cavity half spacing.

ȧ =
V̇

4πh(Ψ)a2
(4.8)

ḃ =


−πb3FN

(〈TN〉
Σ0

)γ
ε̇Ceq if

(〈TN〉
Σ0

)β ∫ T
0
|ε̇Ceq|dt ≥

NI

FN
once

0 otherwise
(4.9)

ṪN =

(
Ju̇KN +

V̇ (TN)

πb2

)
CN (4.10)

ṪS1 =

(
Ju̇KS1 +

TS1

ηGBfS

)
CS (4.11)

ṪS2 =

(
Ju̇KS2 +

TS2

ηGBfS

)
CS (4.12)

The cavity growth equations are

V̇ = V̇ D + V̇ triax (4.13)

V̇ D = 8πD
TN
q (f)

(4.14)

ANL-20/49 35



Identify the influence of microstructure on mesoscale creep and fatigue damage
September 2020

V̇ triax =


2ε̇Ceqa

3πh(Ψ)m

{
αn|

σH
σVM

|+ βn(m)

}n
if | σH

σVM
| ≥ 1

2ε̇Ceqa
3πh(Ψ) {αn + βn(m)}n σH

σVM
if | σH

σVM
| < 1

(4.15)

with (4.16)

f = max

(
a2

(a+ 1.5L)2 ,
a2

b2

)
, L =

(
DσVM
ε̇Ceq

) 1
3

(4.17)

q (f) = 2 log

(
1

f

)
− (1− f) (3− f) (4.18)

h (Ψ) =

(
1

1− cos (Ψ)
− cos (Ψ)

2

)
1

sin (Ψ)
(4.19)

m = sign (σH) (4.20)

β (m) =
(n− 1) [n+ g (m)]

n2
(4.21)

g (m) =


log (3)− 2

3
if m = 1

2π

9
√

3
if m = −1

0 if m = 0

(4.22)

αn =
3

2n
(4.23)

Detailed implementation of the model including: i) the method used to enforce physical
constraint on cavitation state variables, and ii) the methodology used to impose a smooth
inner-penetration penalty are described in [21]. Table 4.2 describes all the model parameters
and their calibrated values used as the starting point for the uncertainty quantification
studies in the next chapter.
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symbol description value units
β traction nucleation exponent 2 unitless
nGB creep rate exponent 5 unitless
a0 initial cavities half radius 5 · 10−5 mm2

b0 initial cavities half spacing 0.06 mm2

D grain boundary diffusion coefficient 1 · 10−15 mm3/MPa·h

Ψ cavity half tip angle 75 ◦

Σ0 traction normalization parameter 200 MPa
FN

NI
normalized nucleation rate constant 2 · 104 1/mm2

Nmax

NI
normalized maximum cavity density 1 · 103 unitless

EGB interface Young modulus 150 · 103 MPa
GGB interface in-plane Shear modulus 58.63 · 103 MPa
ηGB sliding viscosity 1 · 106 MPa·h/mm

Table 4.2: Grain boundary cavitation material parameters.
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5 Identification of microstructural parameters influencing creep rupture
life

The physically-motivated model describing the creep behavior of Grade 91 has two main
components. The prior austenite grain (PAG) model and the grain boundary cavitation
(GBC) model. Previous work calibrated the PAG and GBC models to fit the deterministic
average of a set of Grade 91 experimental [3, 12, 22, 23]. However, a deterministic model
cannot capture the experimentally observed variability in creep-rupture life. Figure 5.1
depicts the experimentally observed distribution of Grade 91 creep rupture life at 600 ◦C for
a nominal stress of 100 MPa. The black line shows the computed time to creep rupture using
the calibrated parameters.

Both the PAG and GBC models include the simulated creep curve and rupture life. As
both models are physically-based, their parameters aim to describe the evolution of mi-
crostructural deformation and failure mechanism of Grade 91. The PAG model incorporates
two different mechanisms: i) point defect diffusion, and ii) dislocation creep. Point defects
diffusion is related to the chemical potential, enhanced by temperature and driven by stress
gradients. The accumulation and flux of point defect results in a measurable strain contribu-
tion. The PAG model incorporate point defect diffusion utilizing an isotropic linear diffusion
model that generates a strain rate proportional to the deviatoric stress and a diffusion coeffi-
cient A. Dislocation creep is modeled utilizing a crystal plasticity (CP) approach [24] which
uses a power-law to determine the amount of dislocation glide, and includes a slip resistance
strengthening term to mimic the apparent slip resistance increase observed in experiments
[14, 25].

The GBC incorporates three distinct mechanisms: i) cavity growth, ii) cavity nucleation,
and iii) grain boundary sliding. These three mechanism are interlaced with each other
through a set of coupled rate equations describing the evolution of void nucleation and
cavitation. The GBC model assumes continuous nucleation and continuous growth of cavities
generating from carbides present at the grain boundaries. The cavity nucleation rate is
governed by two parameters: a prefactor FN and a traction normalization value Σ0. The
cavity nucleation rate is modeled via the variable b, which physically represents the half space
between two adjacent cavities. The cavity growth process is mathematically expressed in
terms of the average cavity half radius a, which is geometrically linked to the grain boundary
opening via a geometric relationship. The only three calibrated parameters in this model are
the grain boundary diffusivity DGB, the equilibrium cavity shape angle ΨGB, and the cavity
growth exponent nGB. Besides the evolution parameters, the GBC model requires the initial
number of cavities, a0 and the initial cavity spacing b0.

The calibrated parameters will be the baseline for the sensitivity analysis. More details
about the PAG and the GBC models, including equations and parameters values, can be
found in sections 4.1 and 4.2. Table 4.1 and 4.2 list all the parameters and they calibrated
values for the PAG and GBC models, respectively.

5.1 Sensitivity analysis

Sensitivity analysis is a well known technique to identify the most sensitive parameters of a
model with respect to a target scalar variable. A full sensitivity analysis requires exploring
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Figure 5.1: Experimentally observed distribution of Grade 91 creep rupture life at 600 ◦C
for a nominal stress of 100 MPa. The black line represents simulation results

the full parameter space and is usually very expensive. Most of the times hundreds, if
not thousands of simulations are required. The numberer of simulations required to fully
explore the parameter space increases with the number of parameters. Crystal plasticity
simulation are computationally expensive because the material requires solving a complicated
nonlinear system at each integration point whose size linearly increases with the number
of slip systems and state variables. Bandyopadhyay et al. [26] developed a methodology
applying a genetic algorithm rather than a Monte Carlo approach to reduce the number of
required simulations. They claim their approach reduces the number of required simulations
between 100 and 1000 times. However, for a crystal plasticity model with eight parameters
they still had to perform more than 7000 simulations. Therefore, performing a full sensitivity
analysis on a crystal plasticity model with more than 20 parameters (like the model here)
is practically unfeasible. Therefore, we decide to perform a one-at-a-time (OAT) sensitivity
analysis using the deterministic, mean-property calibrated parameters as a starting point.
The OAT analysis varies one model parameter at a time and observes the effect on the final
output.

For our case the variable of interest is the creep-rupture time under uniaxial loading
conditions. To mimic creep experimental loading conditions we used box-periodic boundary
conditions. Box periodic BC simulates periodicity by using three symmetry planes and
imposing an equal displacement on the remaining faces. Furthermore, to simulate uniaxial
loading, a nominal traction boundary condition is imposed on one on the face corresponding
to the loading direction. Figure 5.2 is a schematic illustration of the applied box-periodic BC.
The applied nominal traction of 100 MPa was selected to probe the two different deformation
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Figure 5.2: Schematic representing box-periodic boundary conditions for uniaxial creep load-
ing. The colored block represents the RVE and each color represents a grain. TZ is the
nominal traction and corresponds to a constant applied force.

regimes observed for Grade 91 [3, 27]. 100 MPa is the watershed between the diffusional and
dislocation bulk grain deformation mechanism. Figure 5.3 depicts simulation results for an
applied nominal traction of 100 MPa.

During experiments, the rupture time can be easily measured as the time until the speci-
men breaks in half. However, including failure in stress controlled finite element simulations
is challenging. When damage is widespread the structure will not be able to sustain the
imposed load, and the finite element simulation will have difficulty converging, thus requir-
ing small time steps, greatly increasing the cost of the simulations. Therefore we define a
stopping criteria short of complete RVE failure. To examine the impact of this criteria on
the sensitivity analysis, we consider three options:

1. the time to 1 % interface strain (TT1) in the loading direction,

2. the time to 2 % interface strain (TT2) in the loading direction,

3. the time to 3 % interface strain (TT3) in the loading direction.

If the sensitivity analysis provides the same results for all of the specified failure metrics
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Figure 5.3: Rendering of simulation results for uniaxial creep and a nominal stress of
100 MPa.
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then it can be considered unbiased. The interface strain contribution is computed as:

ε̄GB,ij =

∫
A
lGB,ijdA

V0

A0

A
(5.1)

lGB,ij =
JuKinj + niJuKj

2
(5.2)

(5.3)

where A and A0 are the deformed and undeformed grain boundary area, V0 is the initial
volume, JuK is the displacement jump, and n is the interface normal in the deformed config-
uration.

The OAT analysis is performed by increasing each model parameter by a fix ratio, R =
1 · 10−6 and then computing the variation of the outcome as:

S∗p =

∣∣∣∣TT ∗(p(1 +R))− TT ∗(p)
pR

∣∣∣∣ (5.4)

where TT ∗ is any of the failure metrics. A few parameters of the PAG and GBC models
are related to each other. Specifically, the interface Young’s and shear modulus, EGB and
GGB, are always assumed to be equal to the bulk material. Furthermore, the grain boundary
diffusivity, DGB and the grain boundary viscosity, ηGB, are assumed to be related by [22, 28]:

ηGB =
C

DGB

(5.5)

where C = 1 · 10−9 mm2 is the proportionality constant computed using the calibrated
deterministic values of DGB and ηGB.

Results of the OAT sensitivity analysis are reported in Fig. 5.4. The first noticeable
feature is the independence of the sensitivity from the selected failure metric. This implies
that any of the three metric is equally good to identify the most relevant model parameters.
In what follow we will use the time to 1 % interface strain, TT1, as the failure metric.
Furthermore, the results also show that the most sensitive parameter is the grain boundary
diffusivity, DGB. This result is not surprising and confirms that diffusional cavity growth is
the dominant failure mechanism. This also implies that grain boundary viscosity might play a
role because the viscosity is related to the diffusivity by Eq. 5.5. The second most influential
parameter among the grain boundary model parameters is the initial cavity half radius, a0,
which is related to the size of second phase particle distribution at grain boundaries. The
The most sensitive parameter for the grain bulk is the point defect diffusivity constant
A. The grain bulk diffusivity is responsible for contributing to the total inelastic strain
rate (Eq. 4.7), and therefore contributes to the triaxial cavity growth rate (Eq. 4.15).
Conversely parameter related to dislocation glide, like, γ̇0, τ0, τsat, and θ , show a lesser
effect on the creep failure time. Their lower effect might be related to the low applied
stress (100 MPa). Furthermore the, small effect of the dislocation creep parameters implies
that diffusional creep is the dominant deformation mechanisms at this regime. A more
comprehensive sensitivity analysis should be performed to fully investigate the effect of all
the parameters on the creep behavior of Grade 91. A viable and simple approach would
be to repeat the above analysis for different nominal traction levels, to identify at least the
most sensitive parameter at each level.
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Figure 5.4: Sensitivity of different failure metrics with respect to the model parameters
when performing a one-at-a-time sensitivity analysis. The failure metrics are: i) time to 1 %
interface strain (TT1), ii) time to 2 % interface strain (TT2), and iii) time to 3 % interface
strain (TT3). Sensitivity is plotted in log space.
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Figure 5.5: Computed time to failure, using the time to 1 % interface strain metric, as
function of the grain boundary diffusivity.

5.2 Identifying parameters distributions

As a first approximation we assumed that the grain boundary diffusivity is the only parameter
affecting the computed creep rupture life. While this is a crude approximation, it can be
justified by noticing that the grain boundary diffusivity exhibits a sensitivity six orders of
magnitude higher than all the other parameters. Under this assumption, the computed
creep-rupture life is a univariate distribution of the grain boundary diffusivity. Therefore
the grain boundary diffusivity distribution can be computed by identifying the relationship
between the grain boundary diffusivity and the computed creep rupture life, i.e. TT1 (DGB),
and then constructing the DGB distribution starting from the experimental observations. To
identify such relationship we performed a set of simulations changing the value of the grain
boundary diffusivity. Figure 5.5 depicts the computed time to failure as function of the grain
boundary diffusivity.

The grain boundary diffusivity distribution can be recovered by using piecewise interpo-
lation to calculate the diffusivity given the observed experimental time to failure. Figure 5.6
depicts the discrete and continuous grain boundary diffusivity distribution. The original,
deterministic calibrated parameter value is very close to the most frequent computed value,
thus implying that the deterministic model correctly captures the mean behavior of Grade
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Figure 5.6: The numerically computed grain boundary diffusivity distribution. Vertical
line represent the calibrated DGB value. The blue line represents a smooth distribution
calculated using the kernel density estimation.

91. The width of the diffusivity distribution is approximately three orders of magnitude,
which reasonably matches experimental measurements. McGarrity et al. [29] showed that
the variation of diffusivity between low energy and high energy grain boundaries is approxi-
mately 10 orders of magnitude. Cao et al. [30] Showed that the excess free volume is linearly
correlated to the grain boundary energy. Furthermore, it is reasonable to assume that the
grain boundary diffusivity is linearly related to excess free volume, because a larger free vol-
ume would ease the diffusion process. Hence the diffusivity can be assumed to be correlated
to the grain boundary energy. Ratanaphan et al. [31] computed the free surface energy of
more than 400 grain boundaries, including very low energy and random grain boundaries.
Normalizing their results shows that variability of the grain boundary energy for random
grain boundaries is about 30 % (see Figure 5.7). Hence, by assuming a log-linear correlation
between the grain boundary diffusivity and the grain boundary energy, a 30 % variability in
energy can explain the 3 orders of magnitude variability on the grain boundary diffusivity .

The other parameters exhibiting high sensitivity should also be incorporated in the model
for a full sensitivity analysis. Also our analysis does not account for correlations between
different parameters, except for the correlation between diffusivity and sliding viscosity dis-
cussed in Section 5.1.
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Figure 5.7: Normalized grain boundary energy. The dashed line shows the variability of the
energy for random grain boundaries. Data from [31]
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6 Conclusions and future work

This report includes both improvements to MOOSE framework and a preliminary microstruc-
tural model capturing the observed scatter of the creep rupture life of Grade 91.

Improvements to the MOOSE framework include:

• The addition of a large-deformation kernel to the tensor mechanics module allowing
MOOSE to use a total Lagrangian formulation. The new kernel also include the ana-
lytically correct Jacobian.

• A new scalar kernel system imposing average stress and strain for arbitrarily-shaped
unit cells while maintaining the Hill-Mandel condition.

• A new mesh generator that automatically detects periodic boundaries for arbitrarily-
shaped unit cells. The mesh generator was designed to allow users to directly utilize
periodic Voronoi tessellation generated by Neper without utilizing any kind of external
preprocessing tool.

• A new large-deformation cohesive zone model accounting for large area changes and
large rotations of the interface. The introduction of a large deformation cohesive zone
system was necessary to account for the large area changes observed during creep tests.
This system includes both a new material and a new kernel. The new system also also
includes the analytically correct Jacobian.

All the above improvements together will allow MOOSE users to perform true periodic
crystal plasticity simulations without the need of meshing tools or preprocessing scripts,
while utilizing a consistent stress measure. Pull requests to merge all the above improvements
into MOOSE are in preparation and could be used in future modeling efforts.

The microstructural model for creep in Grade 91 was used to identify key microstructural
parameters controlling creep failure:

• A one-at-a-time sensitivity analysis was performed to identify the parameters most
influencing the computed creep-rupture life of Grade 91 at a constant nominal stress
of 100 MPa. Results of the sensitivity analysis showed that the most influential model
parameter is the grain boundary diffusivity.

• By using the sensitivity analysis results we showed that the experimentally observed
creep-rupture life scatter can be accounted for utilizing a univariate statistical model
only including the distribution of the grain boundary diffusivity.

• The obtained grain boundary diffusivity distribution was reasonable because its com-
puted variability is comparable to the variability of the grain boundary energies.

While the proposed probabilistic model is able to capture the statistical distribution for
creep-rupture life of Grade 91 steel further validation is need to demonstrate its applicability
to a wider range of applied stresses.

Furthermore it would be of scientific and engineering interest to include the variability
of other parameters to better capture the experimentally observed deformation and failure
variability. For instance recent experiments performed at the Advanced Photon Source show
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that not all the favorably oriented grain boundaries will experience cavitation. This is in
contrast with the baseline results of the utilized physically-based micro-mechanical model [4].
The most probable cause of this behavior is the homogeneity of grain boundary properties
in the model. There is experimental evidence [32, 33] and numerical studies [12, 34] showing
that accounting for the grain boundary character greatly increase the predictive capability
of grain boundary models. Bulatov et al. [35] proposed a methodology computing the grain
boundary energy given the grain boundary character, Ratanaphan et al. [31] found correla-
tions between the grain boundary energy and grain boundary properties. Incorporating the
grain boundary character in the micro-mechanical model will remove the assumption that
all grain boundaries are equal and will incorporate the inherent grain boundary properties
variability observed in experiments.

In addition to this improvement to the model physics, better numerical methods will be
needed for UQ analysis through the CPFEM model. Chapter 5 cites [26], which promises
a significant reduction in computational cost versus a Monte Carlo method. This technique
could be explored. Additionally, improvements to the model numerics to reduce computation
time will directly translate to reducing the time required for UQ.

Finally, this general approach could be extended to creep-fatigue simulations. The intro-
duction notes that the program focused in FY2020 on creep loading, but future work will
extend to creep-fatigue. Here, numerical expense will be critical as cyclic loading requires
large numbers of time steps simply to represent the load reversals. The methods described in
the previous paragraph could be helpful. Additionally, cyclic extrapolation schemes could be
developed to skip entire load cycles without significantly compromising the model’s accuracy.
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